Gvozdik.ru Rambler's Top100
строительный каталогстроительный каталогновости и обзорыновости и обзорыконкурсы и тендерыконкурсы и тендерынормативные документынормативные документывход для клиентоввход для клиентов
     главная      страница управления      подписка
  
 Расширенный поиск


Каталог
Стройматериалы
Услуги
Поиск
Тендеры
Строительные тендеры
Крупные закупки

Объявления
Б/У техника
Биржа труда
Статьи
Новости
Новости компаний
События
Обзоры
Документы
ЕНиРы
Законы, постановления
Коэффициенты пересчета
СНиПы, правила

О нас
О проекте
Реклама
Контакты
  • Квартира в новом доме
  • Строительные инструменты
  • ПВХ как стройматериал
  • Теплый пол под плитку
  • Старые и новые строительные леса
  • Современные технологии возведения кирпичных домов
  • Дисконт-портал "Эврика": выгодно для всех
  • Как установить акриловую ванну своими руками
  • Делаем водяное отопление
  • Строим теплицу
  • Монтаж OSB плит
  • Качественный виниловый сайдинг
  • Используем жидкое стекло
  • Дерево и гвозди
  • Строим террасу
  • Как правильно выбрать счетчик на воду
  • Затирки для плитки
  • Что собой представляет SPU-изоляция?
  • Какая она элитная кровля?
  • Почем кровельный профнастил в Москве?
  • Акриловые вкладыши для ванн от "Экоакрил"
  • Обзоры
    Пожалуйста выберите интересующую Вас категорию:
    к-во позиций в разделе
    Автоматизация строительных фирм3 
    Анализ, прогнозы, тенденции369 
    Строительные материалы3172
    Строительные технологии877 
    Строительные услуги72 
    к-во позиций в разделе
    Автоматы защиты4 
    Вентиляция, кондиционирование28 
    Витражные изделия4 
    Герметик5 
    Гидроизоляция. Теплоизоляция. Звукоизоляция89 
    Железобетонные изделия57 
    Композиционные материалы17 
    Кровельные материалы66 
    Лакокрасочные, сыпучие и вяжущие материалы62 
    материалы низковольтного оборудования19 
    Натяжные потолки13 
    Обогреватели12 
    Окна, двери85 
    Отделочные материалы87 
    Печи и камины8 
    Плитка керамическая17 
    Полиуретан3 
    Прочее179 
    Радиаторы7 
    Стеновые материалы и покрытия для пола142
    Трубы52 
    Фанера1 
    Фасад2 
    К основной странице раздела
      Испытания керамического кирпича на морозостойкость
    16.02.2001
    Керамический кирпич — один из древнейших строительных материалов, технология производства которого совершенствуется до настоящего времени с целью улучшения потребительских свойств, снижения затрат на изготовление, повышения производительности труда, уменьшения выбросов, загрязняющих атмосферу.

    Керамические кирпич и камни обладают неорганическими архитектурными возможностями, позволяющими строить здания и сооружения с неповторимой формой, долговечные, а затраты на содержание фасадов самые низкие при оправданной для данных климатических условий архитектуре. Вместе с тем известно достаточно случаев, когда фасады зданий из кирпича разрушаются. Для выявления причин еще в конце 80-х годов был создан ряд государственных комиссий, которые обследовали эти здания и установили, что основной причиной разрушения является переувлажнение стен водой до 18% (при фактической эксплуатационной влажности не более 2%) из-за непродуманной архитектуры, строительных недоработок, неправильно организованных стоков воды и т. д. Однако известны случаи, когда причиной разрушения является низкое качество кирпича, обусловленное нарушением технологии производства и, в первую очередь, наличием дефектов макроструктуры глиняного черепка и недостаточной степенью его спекания.

    Для контроля качества керамических стеновых материалов стандартом на эти изделия введен показатель морозостойкости, который определяется числом циклов попеременного замораживания при температуре минус 15—20°С и оттаивания в воде при плюс 15-20°С насыщенных водой изделий. В стандарте Республики Беларусь, учитывающем климатические условия, где в осенне-зимний период года переход температур через нулевую отметку превышает 100 раз, минимальная морозостойкость лицевых изделий принята не менее 35 циклов, в российском стандарте - 25 циклов.

    Испытания на морозостойкость кирпича проводятся в соответствии с ГОСТ 7025-91 «Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости». В соответствии с требованиями этого стандарта для проведения испытаний необходима камера морозильная с принудительной вентиляцией и автоматически регулируемой температурой от минус 15 до минус 20°С. Рекомендуемые типы камер и их характеристики приведены в приложении стандарта. Кроме того, объем образцов, загружаемых в камеру, не должен превышать 50% ее полезного объема. Такое требование стандарта к испытательному оборудованию позволяет аттестовывать бытовые морозильники, дооборудовав их вентиляторами. Это приводит к тому, что при испытании одних и тех же керамических изделий в разных испытательных центрах результаты испытаний не совпадают. В последнее время на рынках России и Белоруссии появилось много импортных морозильных камер, оснащенных моноблоками, которые аттестуются и используются как испытательное оборудование. Так, на УП «Минский завод строительных материалов» и ОАО «Керамика» (г. Витебск) аттестованы Госстандартом и используются в качестве испытательного оборудования морозильные камеры объемом 12 м3, оснащенные низкотемпературными моноблоками.

    При разработке стандарта на методы испытаний, в частности по керамическому кирпичу, использовались наработки бывших институтов ВНИИТеплоизоляция (Вильнюс) и ВНИИСтром (Москва). Такие же морозильные камеры, оснащенные компрессорами АК-ФВ-4 и испарителями настенного типа ИРСН-12,5, установлены и используются более 25 лет научно-исследовательским УП «НИИСМ» (Минск). В 2000 г. на УП «НИИСМ» была смонтирована, аттестована Госстандартом и введена в эксплуатацию новая морозильная камера КХН-8 с низкотемпературным моноблоком VTB-400 (Италия) и программным пультом управления, которая соответствует требованиям ГОСТ 7025. Характеристики морозильных камер приведены в таблице.

    Сравнительные испытания половинок одного кирпича в различных камерах показали, что морозостойкость, получаемая в камере, оборудованной моноблоком, на 10—20 циклов выше, чем в камере с испарителями настенного типа. Это значит, что неморозостойкий кирпич при испытаниях на морозостойкость в камерах, оснащенных моноблоками, будет иметь морозостойкость не ниже 25 циклов. Последствия от применения такого кирпича в строительстве вполне предсказуемы. Чем же можно объяснить то, что один и тот же кирпич при испытаниях по одной методике, но в разных камерах, соответствующих требованиям стандарта, имеет такую разницу в морозостойкости? Если проанализировать процессы, происходящие в водонасыщенном кирпиче при его замораживании, то можно объяснить причину несогласованности результатов. Так, в соответствии с требованиями ГОСТ 7025 перед испытанием кирпича на морозостойкость его необходимо полностью насытить водой. При замораживании такого кирпича при температуре минус 15—20°С часть воды замерзает в порах с образованием льда. Учитывая, что черепок полностью насыщен практически несжимаемой жидкостью (водой), в структуре глиняного черепка возникает определенное внутреннее давление, связанное с переходом воды из жидкого в твердое состояние с увеличением объема примерно на 9%, что и приводит при многократном повторении к расшатыванию структуры с последующим ее разрушением.

    Если керамический черепок недонасыщен водой и имеются свободные поры, то они могут выполнять роль своеобразных компенсаторов, что было установлено ранее проведенными исследованиями [I], и тем самым снижать внутреннее давление, возникающее при замерзании воды в порах, а следовательно, в меньшей степени расшатывать структуру глиняного черепка. Нет сомнения в том, что водоненасыщенный кирпич (сухой) от воздействия знакопеременных температур разрушаться в такой степени не будет. Таким образом, если принять за основу эту теорию разрушения кирпича, то можно объяснить, что происходит при его замораживании в камерах с настенными испарителями, в камерах, оборудованных моноблоками, исходя из принципа их работы.

    Отличительной особенностью камер, оборудованных моноблоками, является то, что теплоноситель (воздух), идущий на охлаждение замораживаемого кирпича, продувается вентилятором через испаритель. Так как в камере находится влажный кирпич, относительная влажность воздуха увеличивается и при продувке его через холодный испаритель вода конденсируется на поверхности испарителя, намерзает и накапливается. Впоследствии это приводит к включению системы оттаивания с выводом воды за пределы камеры. Таким образом, относительная влажность холодного воздуха, циркулирующего в камере, снижается и повышается разность парциального давления паров воды на поверхности кирпича и воздуха. Это приводит к тому, что загруженный в камеру на испытания водонасыщенный кирпич подвергается сушке сублимацией, что не наблюдается в морозильных камерах, оборудованных настенными испарителями. Это подтверждается тем, что масса водонасыщенного кирпича после заморозки в камерах с настенными испарителями почти не меняется, а в камерах с моноблоком снижается на 0,5—1% или на 4,7—8,6% уменьшается содержание воды.

    Полученные результаты позволили установить, что при использовании в качестве испытательного оборудования морозильных камер с моноблоками, соответствующих ГОСТ 7025, последние подсушивают кирпич и завышают фактическое значение показателя морозостойкости.

    Для объективной оценки морозостойкости керамических кирпича и камней необходимо внести изменение в действующий стандарт в части ужесточения регламентации испытательного оборудования либо внести изменения в методику подготовки образцов кирпича к испытанию.

    В УП «НИИСМ» были проведены также исследования по усовершенствованию методики подготовки кирпича к испытаниям на морозостойкость. Для исключения возможности сушки сублимацией кирпич после водонасыщения под вакуумом по методике, разработанной в УП «НИИСМ», был упакован в герметичный полиэтиленовый пакет и испытан в различных типах морозильных камер. Оттаивание кирпича производилось без снятия пакета. Полученные результаты свидетельствуют о том, что существенной разницы в циклах морозостойкости не наблюдается.

    Наименование камер Производительность по холоду ккал/ч Площадь испарителя, кв. метр Рабочий объем камер, куб. метр Хладоагент Мощность кВт
    Камера, оснащенная испарителем типа ИРСН 4000 75 7,5 Фреон -12 6
    Камера, оснащенная моноблоком 2700 5 8 Фреон - 22 7,5


    Источник: Журнал «Строительные материалы» , январь 2001 г., №1(553)




    Строительные тендеры 
    Текущих тендеров: 23, полный список, объявить тендер
    Новые тендеры:
    30.05.2020 Строительство
    Ремонтно-строительные работы. Контракты от 10 до 500 млн. руб. по России. Государственные и коммерческие заказы...
    27.05.2020 Изготовление информационной продукции
    Изготовление и разработка макетов информационной продукции (стенды, таблички)...
    25.05.2020 Ремонтно-строительные работы.
    Инвестиционно-строительная компания приглашает строительные компании и строительные бригады с/без СРО принять участие в конкурсе на выполнение ремонтно-строительных...
    25.05.2020 Строительство
    Здравствуйте, меня зовут Константин, профессионально 9 лет занимаюсь госконтрактами и коммерческими тендерами по строительству, своя организация. Сейчас...
    17.12.2019 Ремонтно-строительные работы
    Ремонтно-строительные работы в корпусе №23, 1 этаж-помещения 1, 2, 3, 4.5, 6, 7, 8, 17, 19, 20, 21...
    Служба размещения тендеров Gvozdik.ru

    С чего начать?
    Знакомство с Gvozdik.ru начните со страницы:
     Размещение информации

    Участникам:
    Работа с Вашей информацией:
     Страница управления

    Подписка на информационные рассылки Gvozdik.ru:
    E-mail:
     Подписаться
     Изменить параметры
     


     Стройматериалы и услуги   Обзоры   Тендеры   Крупные закупки   Б/У техника   Биржа труда   Новости

    © 2000-2020 Gvozdik.RU   E-mail:  info@gvozdik.ru   О проекте  Условия размещения рекламы на сервере   Контакты  Карта сайта

    Rambler's Top100 Яндекс.Метрика